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Abstract. We discuss the characterisation of intermittency in chaotic dynamical systems 
by means of the time fluctuations of the response to a slight perturbation on the trajectory. 

A set of exponents is introduced which generalise the maximum Lyapunov characteristic 
exponent. The link with the statistical mechanics formalism is emphasised and we show 
that the exponents are connected to a free energy formally defined for chaotic systems. 
We perform some analytical computations in simple cases and give a few numerical 
examples. 

1. Introduction 

Intermittency is one of the most amazing phenomena in nonlinear dynamical systems. 
One observes ordered motion in phase space for long time, interrupted by randomly 
distributed bursts of strong chaoticity (Pomeau and Manneville 1980, Manneville and 
Pomeau 1980, Hirsch et a1 1982). This strange behaviour was first observed in the 
experimental analysis of fully developed turbulence (Kuo and Corrsin 1971, Monin 
and Yaglom 1975). In this context we have recently proposed a model which describes 
the fractal structure of turbulent eddies in terms of local velocity fluctuations (Benzi 
er a1 1984a) and a similar analysis was applied to strange attractors of chaotic systems 
using the moments of point density on the attractor (Paladin and Vulpiani 1984). In 
the spirit of this approach, time intermittent behaviour can be quantitatively charac- 
terised using the moments of the response function to perturbations (Fujisaka 1983, 
Benzi et a1 1984b). A similar approach has been also introduced by Grassberger (1984) 
in order to study the relation between Lyapunov characteristic exponents and fractal 
dimension in chaotic systems. 

On the other hand it has been pointed out that the formalism of statistical mechanics 
may be usefully applied to the theory of dynamical systems. Rigorous results were 
obtained by Bowen (1975, 1979), Ruelle (1976, 1978), Sinai (1968, 1972) and Walters 
(1976) mainly for axiom A systems. It is possible in this case to introduce the concept 
of Gibbs states, entropy, pressure and all the machinery of classical one-dimensional 
spin models. It is unfortunately hard to extend these results to more general cases but 
a formalism, appealing to intuition, has been introduced for chaotic systems (Oono 
and Takahashi 1980, Takahashi and Oono 1984). 
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We discuss the characterisation of intermittency in § 2 introducing a set of gen- 
eralised Lyapunov exponents which are somehow analogous, for time behaviour, to 
the quantities introduced by Benzi et a1 (1984a). In § 3 we show the link of this 
approach with the statistical mechanics formalism on a rather naive level. Numerical 
results for some dynamical systems are exhibited in $ 4 .  

2. Generalised Lyapunov exponents 

Let us consider a dynamical system, i.e. either a set of differential equations or a map: 

x = f ( x ) ,  xn = g(xn-1) (1) 

with x,  J g E Rd. The greatest Lyapunov exponent A is defined as: 

where 5 is the tangent vector whose evolution is given by: 

A measures the sensitivity to initial conditions and  is therefore an  indicator of the 
degree of chaos (Benettin et a1 1976, 1980a, b).  Positive A implies exponential error 
growth with characteristic time A - '  

6x( t )  - 6x(O)  eh'  (4) 

where 6x(O)  is the initial error. Lyapunov exponents cannot describe the degree of 
intermittency for a chaotic dynamical system. In fact a mathematical definition of 
intermittency has not yet been given. 

We can think of intermittency as a non-uniform distribution in time of 'chaotic 
behaviour'. Hence we wish to give a quantitative description for the fluctuations of 
the 'degree of chaos' in the system. To this purpose we introduce in this,section a set 
of generalised Lyapunov exponents (Fujisaka 1983, Benzi et a1 1984b) which could 
measure the intermittency. 

Let R , ( T )  be the response function after a time T of a perturbation at time t :  

We define L(q )  as 

R(7)' - exp( l (q ) . r )  (6) 

where ( . . . ) is a time average and T is large enough. L (q )  recalls respectively the 
quantities Sq and @ ( q )  previously introduced (Benzi et a1 1984a, Paladin and Vulpiani 
1984) to characterise spatial intermittency in fully developed turbulence and the 
non-homogeneous structure of strange attractors. 

Let us first consider the case without fluctuations of R , ( T ) .  This is the non- 
intermittent case. One has, in the absence of fluctuations, 

L(q)  = Aq.  ( 7 )  
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It follows that deviations from (7) give a measure of the degree of intermittency. One 
can show that L ( q )  is convex in q (Feller 1971). Moreover in the general case we have: 

A = d~(q) /dql ,=o .  (8 )  

It is sometimes stated that a system is stable under small perturbations if A < O .  
However simple arguments indicate that if limq+x L( q )  > 0 then the system has a finite 
probability that a small perturbation gives a large response. Let us give a simple 
example. We can compute analytically L ( q )  in the case of the one-dimensional 
Langevin equation 

X =  -dV/dX+T ( 9 )  

where 7 is a white noise, i.e. a random Gaussian process with zero average and 
covariance: 

( 7 ( f ) 7 ( f ' ) ) =  8 ( t -  t ' ) .  (10) 

We consider two trajectories x(  t )  and 2( t )  = x(  t )  + E (  t ) ,  both satisfying equation (9) 
with the same realisation of the noise. We define 

which is of course a functional of 7. The function L ( q )  is defined as: 

where P [  71 is the Gaussian probability distribution functional. Usual arguments imply 
that L ( q )  does not depend on x(0). Our aim is to evaluate L ( q ) .  We first notice that 

where the dependence on 7 comes through the dependence of x (  t )  on 7. Let us evaluate 

R ' ( T )  = I d p [ x ] '  exp( - q  j: V ( x ( t ) )  di)  

where dp[x]' is the measure induced on the trajectories by the stochastic differential 
equation (9). It is well known that (see e.g. Graham 1978): 

dp[x]'=d[x]'exp( -1; ( f X ( t ) 2 +  U(x(t)))  dt) 

= dP[x]' exp( - j: U(x( t ) )  dr) (15) 

where dP[x]' is the usual Wiener measure on the trajectories and we have neglected 
the boundary terms (i.e. terms depending on x(0) and X (  7 ) ) .  The function U is given 
by: 

U ( ~ ) = f ( d V / d x ) ~ - f  d2V/dX2. ' (16) 

The Feynman path integral representation for quantum mechanics at imaginary time 
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implies that (Feynman and Hibbs 1963): 

I d p [ x l '  - 7 - s  exp(-TEO( U)) 

where we have neglected the prefactor and Eo( U )  is the ground state of the Hamiltonian 

k = -; d2/dx2+ U(x).  (18) 

Consistency requires that Eo( U )  = 0, which is indeed trivial to check. We can now write 

) = j d [ x ] '  exp( - [: (;a( t ) 2 +  U(x( t ) )  + q V ' ( x (  t ) ) )  dt  

where E o ( q )  is the ground state of the Hamiltonian 

A(q) = - fd2/dx2+ U ( x ) + q V ( x ) .  

It is clear that 

L ( q )  = -Eo(q) .  (21) 

Equation (21) gives us a method to compute the L ( q )  in an approximate way; a few 
exact solutions are available: for example if V = x2 we have L ( q )  = -2q. In the general 
case we remark that limq+m L ( q ) / q = - L *  is easy to compute and it is given by 
L* = minx V"(x). This means that, although L ( q )  can be negative for small q and the 
system is stable in the usual sense, the system can be unstable under a small perturbation 
as soon as V ( x )  is negative somewhere as previously discussed. 

We remark that this situation is somewhat similar to what happens in the case of 
multifractal sets in both fully developed turbulence and chaotic attractors: the strongest 
singularities dominate the behaviour of the high moments for the structure functions 
(Benzi et a1 1984a; for a similar case in a different context see Berry (1977, 1982)). 

3. Statistical mechanics formalism and intermittency 

Chaotic systems do generally not satisfy axiom A and the extension of the statistical 
mechanics formalism is questionable. Nevertheless some authors (see e.g. Takahashi 
and Oono 1984) proposed a formal generalisation for the case of one-dimensional 
maps. Let us show how by this approach we can achieve a deeper understanding of 
the generalised Lyapunov exponents. For a n-spins system with periodic boundary 
conditions the partition function Z,, is the sum on all configurations of length n of the 
Boltzmann weight e-pH'l, where H,, is the energy of the configuration and p-' the 
temperature. The free energy for spin is given in the thermodynamical limit by: 

Takahashi and Oono (1984) introduced a free energy F(g,  p )  for unit time in the case 
of one-dimensional maps x,+, = g(x,,) via the relation (22), defining the partition 
function as 
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where Fix(g") is the set of the unstable fixed points of g" = g 0 g 0 .  . . 0 g ( n  times) and 
' indicates derivation with respect to y. Relation (23) is the analogue of the partition 
function which has already been defined for axiom A systems (Ruelle 1978). Let us 
call R,(y) the response function at time n to a perturbation around y, unstable periodic 
solution of period n. Relation (23) becomes 

It seems reasonable to estimate (24) by a time average ( . )  in the chaotic phase of the 
system, where ergodicity should hold. It is known that F(g, /3 = 1) = 0 for chaotic maps 
g supported by absolute continuous measures (Ledrapier 1981). It follows by (22) 
and (23) that the weight to be used in an 'ensemble' average is I(g')'l-'. Thus one has 

Comparing equations (6) and (25) we obtain 

L(1 - P )  = -PF(g, P ) .  
The greatest Lyapunov exponent A as defined in (8) is related to the internal energy 
V =  ( a / d p ) ( p F )  at ,f3 = 1: 

A = V(g, P)lP=I. (27) 

It is tempting to make an analogy between classical statistical mechanics of spin 
systems and the theory of dynamical systems by noting that the no-intermittency case 
corresponds to a constant internal energy, i.e. to the case of high temperature. 
Intermittency is allowed if the 'temperature' of the system is reduced and the 
thermodynamic functions are not trivial (for instance the internal energy is a function of 
the temperature). Let us finally remark that formula (26) allows, at least formally, the 
computation of a free energy for dynamical systems also in the case of dimension greater 
than one and for differential dynamical systems. 

4. Discussions and numerical results 

The functional dependence of L( q )  on q contains all the information on the fluctuations of 
R,( 7). In the simple case that a central limit theorem can be applied to In R,( T), L( q )  has 
the form: 

L ( q )  = A q + h 2  (28) 

((In ~ ( ~ ) - ( l n  R ( T ) ) ) ~ ) = ~ T .  (29) 

where p is related to the variance of In R(T) :  

In this case p / A  is a parameter measuring the degree of intermittency: p/A = 1 is the 
critical value which discriminates between weak and strong intermittent behaviour. 
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Indeed, the log-normal probability distribution that we have assumed 
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has a maximum for 

k (  7) = exp[A.r( 1 - +./.A)]. 
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It follows, in the large time limit, that: 

i ( 7 )  - 0 P I A  ’ 1 (32a) 
7-m 

&7)- 7-02 00 p / A  < 1. (326) 

I / I  
I 

/ 

We obtain that corrections to the ‘mean field’ (i.e. taking into account only the maximum 
of the probability distribution) due to the intermittent behaviour cannot be neglected 
if p / A  > 1, giving a quite different qualitative behaviour. The two cases are sketched 
in figure 1: in the case (32b) intermittent corrections change only the quantitative 
behaviour of L ( q )  at variance with case (32a) .  We remark that in general a log-normal 
distribution for R,( T )  cannot be assured as it is not usually true that thermodynamical 
functions have a universal functional relation with the temperature. 

Figure 1. Schematic view of L ( q )  for the log-normal distribution of R ( + ) .  The full line 
( I )  is L ( q )  in the mean-field approximation, the broken curve (11) refers to equation (28).  
( a )  p / A  > 1. ( b )  p / A  < 1. 

To discuss this point further we have performed a series of numerical computations 
of L ( q )  for the Henon-Heiles (1964) model, the Henon map (1976) and Lorenz system 
(1963) (see figures 2-4). The Henon-Heiles model shares a good consistency of L( q )  
with equation (28) with p / h  near to 1. On the contrary the Henon map and  the Lorenz 
model for r near 166.07 (the critical value of intermittency transition to turbulence, 
see Manneville and Pomeau (1980)) shows strong deviations from a log-normal distribu- 
tion of Rt(7) .  We finally remark that in the Lorenz system for r near 24.74 (the critical 
value for the fixed points to be unstable) a linear behaviour of L ( q )  is found. 
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Figure 2. A L ( q )  = L( q )  - A q  against q2 for the Henon-Heiles model. The line indicates 
A L ( q )  =fpq2. The initial conditions on the chaotic region at the energy surface E = 0.125 
(integration time 2 x io5). 

q 2  

Figure 3. As figure 2 for the Henon map with a = 1.2, b = 0.3 ( IO5 iterations). 

I / 

0 1 
q 2  

Figure4. As figure 2 for the Lorenz model at ( a )  r = 166.1 and ( b )  r =  166.3 (integration 
time io5). 

The last result can be understood with a simple analytical argument. It is known 
that the Lorenz model for r b  24.74 can be qualitatively described (Lorenz 1963) by 
the one-dimensional map: 

for x, <f 
for x, > f. (33) 

It is simple to compute the function L ( q )  for the map (33) as defined by equations 
(22), (23) and (26). Because the number of the unstable fixed points for the n iteration 
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is 2" - 1 with slope *2", we obtain 

2, = (2" - 1) exp(-P In 2"), 

Hence we get L ( q )  = q In2  which shows that map (33) has no intermittency with 
Lyapunov exponent In 2. Modifying the map (33) in order to have different slopes in 
different regions, we can easily obtain 'intermittent behaviour. For instance let us 
consider the following map: 

[ 4ax" f o r O s x , s f  

4( 1 - (Y)(x, -a) + 1 :SX"S;  
;sx < 1  4(a-1)(xfl-;)+1 n - 4  

. % ? + I  = g(x,) = (34) 

$ S X " S l .  

For a = $ we recover the previous case (33). In order to show the intermittency for 
a # 4, we compute the quantity: 

which measures the fluctuations of the response as a function of a. We find that for 
a near 0.5 S - (a - $ ) 2  (see figure 5 )  which shows how the intermittency is built into 
the system. 

0.101 

-0 1 -005 0 0 05 01 
(U-0 51 

Figure 5. Plot of S against a. The full line indicates the curve ( a  -+)'. 
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